Bayesian model averaging in the instrumental variable regression model
نویسندگان
چکیده
منابع مشابه
Bayesian Model Averaging in the Instrumental Variable Regression Model
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov...
متن کاملPredicting waste generation using Bayesian model averaging
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...
متن کاملBayesian Model Averaging for Linear Regression Models
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferenc...
متن کاملBayesian Additive Regression Trees using Bayesian model averaging
Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be considered a Bayesian version of machine learning tree ensemble methods where the individual trees are the base learners. However for datasets where the number of variables p is large (e.g. p > 5, 000) the algorithm can become prohibitively expensive, computationally. Another method which is popular for hig...
متن کاملVariable selection and Bayesian model averaging in case-control studies.
Covariate and confounder selection in case-control studies is often carried out using a statistical variable selection method, such as a two-step method or a stepwise method in logistic regression. Inference is then carried out conditionally on the selected model, but this ignores the model uncertainty implicit in the variable selection process, and so may underestimate uncertainty about relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2012
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2012.06.005